1 – Extremely powerful Antioxidant , Glutathione

Glutathione is an extremely powerful antioxidant and therefore the key to all body functions

Researchers have associated low levels with several medical conditions.

  • Glutathione reduce inflammation in body
  • Glutathione breaks down the free radicals
  • Glutathione is the ultimate detoxifier and fights oxidative stress.
  • Glutathione promotes high energy and mental clarity
  • Glutathione regulates Vitamin C and Vitamin E
  • Glutathione prevents cancer progression
  • Glutathione reduces the symptoms of Parkinson’s disease
  • Glutathione improves sleep and stress due to sleep apnea
  • Glutathione reduces cell damage in all kind of liver as well as kidney diseases

2- Nicotinamide adenine dinucleotide (NAD +) 

NAD + biosynthesis, aging, and disease
Sean Johnson, Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing and Shin–ichiro Imai, Conceptualization, Funding Acquisition, Project Administration, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing
Additional article information

Abstract
Nicotinamide adenine dinucleotide (NAD +) biosynthesis and its regulation have recently been attracting markedly increasing interest. Aging is marked by a systemic decrease in NAD + across multiple tissues. The dysfunction of NAD +biosynthesis plays a critical role in the pathophysiologies of multiple diseases, including age-associated metabolic disorders, neurodegenerative diseases, and mental disorders. As downstream effectors, NAD +-dependent enzymes, such as sirtuins, are involved in the progression of such disorders. These recent studies implicate NAD + biosynthesis as a potential target for preventing and treating age-associated diseases. Indeed, new studies have demonstrated the therapeutic potential of supplementing NAD + intermediates, such as nicotinamide mononucleotide and nicotinamide riboside, providing a proof of concept for the development of an effective anti-aging intervention.

Keywords: NAD+, Biosynthesis Aging

Introduction
In recent years, interest in nicotinamide adenine dinucleotide (NAD +) biology has significantly increased in many different fields of biomedical research. A number of new studies have revealed the importance of NAD + biosynthesis for the pathophysiologies of aging and aging-related diseases. This short review will highlight the recent progress in this new connection between NAD + biosynthesis, aging, and disease. In particular, we will focus on the role of NAD + in aging and longevity control, its effect on the function of NAD +-dependent enzymes such as sirtuins, and its relation to the development and progression of age-associated disorders. Finally, we will address the preventive and therapeutic potential of NAD + intermediates.

NAD + decline as an important trigger for age-associated pathophysiologies

The decline in NAD + over age was originally recognized in mice overexpressing SIRT1 in pancreatic β cells (BESTO mice) 43. Young BESTO mice showed a significant improvement of glucose-stimulated insulin secretion. However, as they aged, this phenotype was completely lost. Interestingly, NMN supplementation was able to restore this phenotype in the aged BESTO mice and even improve glucose-stimulated insulin secretion in aged wild-type mice 44. Thus, NAD + decline over age was the cause for the loss of the BESTO phenotype. These findings suggest that the reduction of the NAD + pool with age is responsible for the age-associated impairment of glucose-stimulated insulin secretion. Since this report, a number of studies have also found that NAD + declines over age in worms, flies, and mice 581718. Particularly in mice, it has been shown that several different tissues and organs show decreases in NAD + levels over age, causing metabolic dysfunctions, cardiovascular diseases, neurodegenerative disorders, and cancer 1743– 45.

A significant cause for this age-associated NAD +decline is the decrease in NAMPT-mediated NAD+ biosynthesis. It has been shown that the expression of Nampt at both mRNA and protein levels is reduced over age in a variety of tissues4546. This age-associated decrease in Namptexpression causes a reduction in NAD + in those same tissues, affecting the activities of NAD +-dependent enzymes and redox reactions within the cell and leading to functional decline. Therefore, supplementation with NAD +intermediates, such as NMN and NR, can effectively restore the NAD + pool and cellular functions in aged animals.

Another cause for NAD + decline with age is the increase in NAD + consumption, and this is mainly due to the activation of PARPs 33. It has been reported that PARP1 activity increases, potentially due to the accumulation of DNA damage, so that more poly-ADP-ribose molecules are synthesized in aged tissues 33. This continuous PARP activation further depletes the NAD + pool and causes a reduction in the activity of SIRT1. Furthermore, ectopic PARP1 expression can cause multiple age-associated phenotypes 47. When PARP1 is knocked out, NAD + levels and SIRT1 activity significantly increase. Similar effects can be obtained by pharmacologically inhibiting PARP activity 33. The inhibition of PARP activity thus improves metabolic phenotypes through the activation of SIRT1. In contrast, it was recently reported that DNA damage repair decreases with age, along with a decrease in PARP1 activity 48. Interestingly, deleted in breast cancer 1 (DBC1) can bind to NAD + through its Nudix homology domain (NHD), which prevents it from binding to PARP1. As NAD + declines over age, DBC1 begins to bind to PARP1, reducing its DNA damage repair capacity 49. Therefore, it has been proposed that age-associated NAD + decline triggers the interaction between DBC1 and PARP1, contributing to the accumulation of DNA damage over age 49. Whether PARP1 is activated or inhibited over age could be cell type- or tissue-dependent, and further investigation will be required to clarify this contradiction. As mentioned above, the expression and activity of CD38 have been reported to increase with age 40. Indeed, CD38-deficient mice maintain NAD + levels, mitochondrial respiration, and metabolic functions with age 36. Therefore, CD38 might have a significant contribution to age-associated NAD + decline in certain tissues.

The combination of decreased NAD +biosynthesis and increased NAD + consumption exacerbates the depletion of NAD +, causing a variety of age-associated pathophysiologies 43– 45. Which one contributes further to the depletion of NAD + may be dependent on cell types and tissues. No matter what causes NAD + decline, it seems that major downstream mediators are sirtuins. The roles of sirtuins in the pathogenesis of age-associated diseases are summarized below.

Diabetes

SIRT1 is important for promoting glucose-stimulated insulin secretion in pancreatic β-cells5051. Additionally, SIRT1 has a protective effect against insulin resistance in peripheral tissues, including adipose tissue, liver, and skeletal muscle 52. These findings suggest that SIRT1 is important for glucose homeostasis and the prevention of type 2 diabetes. Whole-body Sirt1-overexpressing transgenic mice, when fed a high-fat diet (HFD), have shown improvements in glucose tolerance through reduction of hepatic glucose production 52. Additionally, these mice do not show changes in body weight or composition. In the kidney of diabetic model mice, SIRT1 inhibits oxidative stress, which can lead to nephropathy, by induction of cyclooxygenase-2 (COX-2) expression 53. It has also been shown that administration of NMN ameliorates glucose intolerance in HFD-induced type 2 diabetic mice, enhances hepatic insulin sensitivity, and restores oxidative stress gene expression, and inflammatory responses, partly through the activation of SIRT1 45.

Non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) is characterized by steatosis of the liver and is linked with insulin resistance and metabolic syndrome. Studies have observed a reduction of sirtuins in NAFLD 54. SIRT1/3/5/6 are reported to be reduced in patients with NAFLD 54. This reduction is accompanied by an increase in lipogenic genes such as fatty acid synthase and SREBP-1. SIRT1 and SIRT3 have particularly been investigated in regard to NAFLD. SIRT1 expression is reduced by HFD 55. Overexpression of SIRT1 upregulates fatty acid oxidation pathways and downregulates lipogenic pathways, protecting the liver from steatosis. SIRT3 function is impaired in HFD, leading to hyperacetylation of target proteins in the mitochondria and impairing their activities 56– 58. SIRT3-deficient mice exacerbate these phenotypes, while overexpression can ameliorate NAFLD 59.

Atherosclerosis

SIRT1 has been shown to improve vascular function. SIRT1 is positioned to affect many pathways important for endothelial function 6063. SIRT1 suppresses the expression of inflammatory factors, including interleukin-6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1), matrix metalloproteinase 14 (MMP14), and vascular cell adhesion molecule 1 (VCAM-1) 64. Additionally, SIRT1 improves free fatty acid, triglyceride, total cholesterol, and blood glucose levels 6566. These protective effects of SIRT1 indicate that it acts as an anti-atherosclerosis agent. Consistent with these findings, NMN administration dramatically improves vascular function in aged mice, partly through the activation of SIRT1 67.

Alzheimer’s disease

Alzheimer’s disease (AD) is marked by multiple pathologies, including neuroinflammation, amyloid-beta plaques, mitochondrial damage, and increased oxidative stress 6869. Patients with AD have lowered expression of SIRT1 7071, which is recapitulated in the hippocampus of AD model mice 72– 75. SIRT1 activation is capable of reducing the amount of oligomerized amyloid beta through upregulating the production of alpha-secretase 6869. This is corroborated by mouse models overexpressing SIRT1 and amyloid precursor protein. Additionally, SIRT1 promotes neuronal function and survival in AD model mice. CA1-localized SIRT1 overexpression not only preserves learning and memory in AD mice but enhances cognitive function in non-AD model mice 76.

Retinal degeneration

Retinal degeneration is prominent in diseases such as macular degeneration and diabetic retinopathy. A recent study reported the importance of SIRT3 and SIRT5 in the survival of retinal photoreceptors 77. In particular, mitochondrial SIRT3 activity is sensitive to the reduction in NAD +. Decreases in retinal NAD +were detected in multiple retinal degenerative disorders, including age-associated dysfunction, diabetic retinopathy, and light-induced degeneration 77. Supplementation with the NAD +intermediate NMN was able to restore retinal function 77. These findings suggest a possible therapeutic treatment for a wide variety of diseases with photoreceptor degeneration.

Depression

Depression is a complex psychiatric disorder associated with a number of pathologies, including inflammation, synaptic dysfunction, metabolic syndrome, and cognitive deficit. Sirtuins have been shown to have a role in the development of depression 78. In the dentate gyrus region of the hippocampus, it has been shown that SIRT1 is decreased under conditions of chronic stress, which has been associated with depressive-like behaviors 79. Additionally, inhibition of SIRT1 by genetic or pharmacological methods has reproduced depressive behaviors. Activation of SIRT1 is able to lead to anti-depressive behaviors 79. However, it has been observed that SIRT1 regulates expression of monoamine oxidase A (MAO-A), which lowers serotonin and drives anxiety-like behaviors 80, indicating that a balance in SIRT1 expression/activity is important for mood disorders.

SIRT2 has also been reported in mood disorders. Hippocampal SIRT2 expression is decreased in chronic stress conditions 81. Pharmacological inhibition of SIRT2 recapitulates depressive behaviors. Adenovirus-mediated overexpression of SIRT2 produces anti-depressive behaviors, which were abolished when hippocampal neurogenesis was disrupted by X-irradiation 81.

Interventions to achieve “productive aging”

NAD + intermediates, NMN and NR, are promising candidates to restore NAD + levels in disease models and aged animals 17. A number of studies have shown that both NAD +intermediates are effective to prevent and treat age-associated pathophysiologies.

We have shown that supplementation of NMN, a key NAD + intermediate, is effective at ameliorating age-associated metabolic disorders and slowing the progression of a multitude of age-associated physiological phenotypes 4582. Briefly, in the 12-month NMN administration study, age-associated body weight gain was ameliorated, energy metabolism and physical activity were improved, and gene expression changes associated with age were reversed. This study demonstrates NMN as an effective anti-aging agent 82. Other recent studies have also reported that NMN administration restores a depleted NAD + pool and is able to improve multiple aspects of disease. In a mouse AD model, one study reported that NMN improved mitochondrial respiration, a hallmark in the progression of AD and other neurodegenerative disorders 83. NMN administration has also shown improvements of mouse cognitive behaviors in the context of AD as well as improving electrophysiological deficits detected on hippocampal slices 8485. These findings suggest that NMN could also be a promising therapeutic agent for the treatment of AD and other neurodegenerative disorders. Additionally, we have shown the importance of NAD +biosynthesis in neuronal function. NAMPT is critical for neural stem cell proliferation and self-renewal. With age, NAMPT and NAD + levels decrease in the hippocampus, along with a decrease in the neural stem cell pool 46. NMN administration is able to rescue the NAD + levels and enhance the neural stem cell pool 46.

NR, another NAD + intermediate, has also shown beneficial effects in age-associated disorders.

In prediabetic and diabetic mice under an HFD, NR administration improves steatosis of the liver, glucose tolerance, and weight gain 8687. These findings also suggest that NR administration could be an effective therapeutic agent for age-associated metabolic disorders. With age, the regenerative capacity of muscle decreases as muscle stem cells enter senescence. This is concomitant with a decrease in NAD + and a reduction of the mitochondrial unfolded protein response (mtUPR) 88. When NR is given, the muscle stem cell self-renewal capacity is restored, and the mtUPR is activated, improving the mitochondrial stress response. Additionally, in this study, mice which started receiving NR supplementation at two years of age showed a significant, moderate extension of life span 88. Dietary supplementation of NR significantly improves NAD + levels in the cerebral cortex and ameliorates cognitive deterioration 89. Application of NR in the context of hippocampal slice electrophysiology ameliorates deficits in long-term potentiation in the CA1 region. In this model system, NR increases PGC-1α, which regulates β-secretase and decreases amyloid-beta peptide. Though not addressed, the role of NAD+-consuming enzymes could be central to these beneficial effects observed. It seems likely that NAD + depletion occurs in certain neurodegenerative diseases. Nuclear DNA damage has been suggested to be associated with neurodegenerative disorders 90. Thus, supplementation of NAD + intermediates, NMN and NR, would be effective agents to prevent and treat neurodegenerative disorders ( Table 1), and this is critical to achieve “productive aging”.

Conclusions
It is now clear that systemic NAD + decline is one of the fundamental molecular events that regulate the process of aging and possibly limit organismal life span. NAD + biosynthesis particularly mediated by NAMPT and NAD +consumption by NAD +-consuming enzymes are in a delicate balance so that perturbations to either side can cause significant derailment of the system. If NAMPT-mediated NAD + biosynthesis is disturbed or if NAD + consumption is increased because of chronic DNA damage that elicits PARP activation, the intracellular NAD + pool is decreased, causing organismal functional decline. Different NAD +-consuming enzymes, such as sirtuins, PARPs, CD38, and SARM1, might be affected in a cell type- or tissue-dependent manner, and loss of NAD + homeostasis can lead to dysfunction of basic physiological systems throughout the body. We now have increasing bodies of evidence supporting that interventions using NAD + intermediates, such as NMN and NR, can bolster the system by restoring the available NAD + and mitigate physiological decline associated with aging. We are at an exciting point in time when we can effectively test the importance of NAD + for the prevention and treatment of aging and aging-related diseases in humans.

You can call the office to make an appointment for Dr. Soheila Torabi or you can use the convenient online booking tool.

request an appointment